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Abstract 

Considering the Feynman path integral representation for the configuration-space density 
matrix for an ensemble of anharmonic oscillators, we determine the 'stationary paths' 
near which the integrand remains stationary. By taking the path integral to be saturated 
by contributions from the neighborhood of the path which maximizes the integrand we 
evaluate the density matrix explicitly in analytic form. This seems to be the first such 
evaluation of a path integral for a system not describable by a quadratic Hamittonian. We 
also comment briefly on the question of analyticity with respect to the perturbation 
parameter. 

1. Introduction 

Recent investigations using a variety of approaches have led to a number of 
results, exact as well as approximate, relating to the dependence of the energy 
eigenvalues En of an anharmonic oscillator on the parameter X representing 
the strength of the anharmonic (quartic) part of the potential. In particular, it 
has been proved by a rigorous analysis (Simon, 1970) that the eigenvalue En 
(for any fixed n), considered as a function of X, has a singularity at the origin 
of the complex X plane. The nature of the singularity itself, which is quite 
complicated, has been unraveled (Simon, 1970; Bender and Wu, 1968; 1969). 
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On the other hand, it has been shown (L6ffel et  al., 1969; Graf t  et  al., 1970) 
that the formal expression for E n as a (divergent) power series in k, which 
results from the Rayleigh-Schroedinger perturbation theory on treating the 
anharmonic term as a perturbation, can be approximated by a sequence of 
Padd approximants whose values converge to the correct eigenvatues o f / / .  The 
success of the Padd approximants is in contrast to the experience with renor- 
malized perturbation theory, which has been shown to be incapable of yielding 
a convergent series in terms of the renormalized parameters (Jaffe, 1965). 
Approximate formula in dosed form for the energy levels have also been 
obtained recently from a semiclassical approach (Mathews and Eswaran, 1972). 

While the analyticity properties of, and the processes of approximation to, 
the energy eigenvalues have thus been rather well explored, the same cannot 
be said of other quantities of interest like the propagator ( x 2 t 2 l X l  t l ) .  The 
perturbation expansion is believed to diverge in this case, too, but no rigorous 
results seem to be known. An interesting procedure for obtaining an approximate 
expression for the propagator was outlined some years ago by Lam (1967). It is 
based on the Feynman path integral representation (Feynman, 1948; Feynman 
and Hibbs, 1965) 

( x 2 t z [ X l t l ) = f ~ x  . e x p [ i f L ( x ( t ) , J g ( t ) ) d t ]  (1.1) 

where D x  denotes integration over all paths going from xl  at tl  to xz at t z. 
The explicit evaluation of path integrals is notoriously difficult, and the cases 
of the free particle and the harmonic oscillator seem to be the only ones for 
which a complete evaluation of (1.1) has been possible so far. However in the 
case of the anharmonic oscillator, with 

V(X) = ~#W2X 2 + ¼ld•W2X 4 (1.2) 

= mass of the oscillator), Lam (1967) evaluated (I.1) using the stationary 
phase approximation (see footnote 1). The resulting expression turned out to 
be nonanalytic in X at X = 0. The nonanalyticity was found to be related to 
the existence of a multiplicity of possible classical trajectories obeying the 
specific boundary conditions. 

Our aim in this paper is to evaluate explicitly another quantity having a 
path integral representation, namely the (unnormalized) configuration space 
density matrix p for a canonical ensemble, defined by 

p(x  2, x 1 ; "r) = (x  2 le -rH/h Ix 1) (1.3) 

Here H is the Harniltonian, and 

"r = fyh = h l k T  (1.3a) 

t The stationary phase method has been applied recently to a system characterized by 
a nonpolynomial Lagrangian (Sarkar, 1973). 
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(k = Boltzmann's constant, T = absolute temperature). The partition function 
Z of the ensemble is of  course expressible in terms of p 

Z(T) -- tr e -rH/n = ; p(x, x; r) dx (1.4) 
_ o e J  

The path integral expression for p is 

p(x2 ,x l ;  r) = f  ~ x  exp - E(u)du (1.5) 

wherein ~ x  stands for integration over all paths x(u), 0 <~ u <. r, subject to 

x(O) = x 1, x(r) = x2 (1.6) 

(The variable u, like r, has the dimensions of time). E is a function of x(u) 
and 2(u) =- dx(u)/du, and has a form identical to the classical expression for 
the energy: E = ½/.t2 2 + V(x). 

The integrand of the functional integral (1.5) is a maximum for a path xm(u) 
which minimizes the quantity fEdu. Since fEdu is stationary with respect to 
variations about such a path, the "minimum path" xm(u ) is a stationary path and 
is therefore determined by the Euler-Lagrange equation 

la2 - V'(x) = 0 (1.7) 

corresponding to the variational principle 6fEdu = 0, together with the 
boundary conditions (1.6). It is known (Brush, 1961) that on approximating 
(1.5) by the contribution to it from paths in the neighborhood of Xm(U ), 
one gets (see footnote 2) 

p ~  2rrC~2D(x2,xl;r) ] exp -£ EmdU (1.8) 

where Ern (u) = E(x re(u), xm (u)), and D(x 2, x 1 ; r ) - t o  be abbreviated here- 
after as D( r ) - i s  to be obtained by solving the following equation: 

d2D(u) 
du 2 = [V"(X)]x=xm D(u) (1.9a) 

D(0) = 0, D(0) = h -1 (1.9b) 

The dependence of D(u) on Xl, x z enters through the minimum path xm 
which is involved in (1.9a). 

We shah carry through the complete evaluation of p, analytically, in the 
above approximation (which is the counterpart of the saddle point approxi- 
rnation often used in the evaluation of ordinary integrals). As far as we know, 
this is the first time that such an explicit evaluation of a path integral has been 

Equation (1.8) is the first term in an expansion analogous to the asymptotic series 
obtained on evaluating an ordinary integral by the method of steepest descents. A syste- 
matic method for generating further terms in the expansion will be reported separately. 
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presented for any system not describable by a quadratic Hamiltonian. It is 
also of interest that unlike other approximation schemes considered in the 
recent literature (Siegel and Burke, 1972) the approximation (1.8) which we 
have employed is not perturbative in the potential or any part of it. 

2. Minimum Trajectories for the Anharmonic Oscillator 

In the following we refer to a trajectory Xm(U ) which minimises fEdu  as a 
minimum trajectory. For an anharmonic oscillator characterized by (1.2), the 
equation (1.7) for Xm(U) reduces to 

2m _ W2Xm _ XW2Xm a = 0 (2.1) 

By a single quadrature one finds that the Lagrange function 

L - ½ I.dc 2 - ~ law2x 2 - ¼ UXw2x 4 (2.2) 

is a constant on the path x(u) = Xm (u). Integration of this equation leads to 
explicit expressions for Xm(U ) in terms of Jacobian elliptic functions. It turns 
out that there are three different forms applicable in different ranges of values 
of L. 

(a) For negative L one has 

Xm(U ) = A nc(vu + 7; k) (2.3) 

where the modulus k, amplitude A and the parameter v (proportional to the 
frequency) of the elliptic function nc (reciprocal of cn) are related by 

1(v~2 ) ( w ~ )  
A 2=~-  - 1  k 2 = l  1+ (2.4) 

' 2 

and 7 is a phase constant. These may in turn be expressed in terms of L which 
determines the value of v 

(p2)2  4,LIX 
~-~ - 1 = /aw2 (2.5) 

Note that in this regime, v > w. 
(b) If 0 < (4LX/law 2) < 1, the solution takes the form 

Xm(U ) = A sc(vu + 3') (2.6) 

with 

A 2 = ~  - - ~ - ~ ,  = 2 - - ~ -  (2.7) 

2p2 [ -- 4LX~ 1/2 
w-'- T -- 1 = ~1 btw2 ] (2.8) 
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(C) When (4LX//~v 2) > 1, the solution is somewhat more complicated 

[Q ~'14 1 + psc(vt + 7) (2.9) 
Xm(U) = I T ]  1 - psc(vt +Y) 

where 

Q = 4LX/law 2 

p = (Q1/2 + 1)-Vz [(4Q)X/4 _ (QV2 _ 1)1/2] 

v = (w/2p)(Q 1/2 + 1) V2, k 2 = 1 - p 4  

(2.10) 

(2.11) 

(2.12) 

One can show that for a given initial value x a of x(u)  at u = 0, a solution of 
the first type (2.3) exists only if the value prescribed for x2 is between the two 
roots of the equation 

Xl 2 + X2 2 - -  2X1X 2 cosh W T  = ~ k X t 2 X 2  2 (2.13) 

The value x 2 = x 1 lies within this range. For x 2 lying outside this range, the 
minimum paths are of the type (b) or (c) depending on the actual value o fx  2. 

In the evaluation of (1.8) in the following, we shall assume that x 1 , x 2 are 
such as to lead to minimum paths of the type (2.3). The boundary conditions 
(1.6) then become 

x 1 = A nc(% k), x 2 = A nc(vr + 7, k)  (2.14) 

Now, the nc function of modulus k has a real period 4K(k)-where K is the 
complete elliptic integral of the first kind-and its behaviour is somewhat like 
that of the secant function: it is an even function and it has an infinite dis- 
continuity whenever the value of the argument passes through an odd multiple 
of K. Such discontinuties are not admissible in any path which is to minimize 
SE du. So the parameters of the nc function in the present case must be such 
that 

- K ( k )  < 7 < vr  + "r < K(k)  (2.1s) 

The two equations (2.14) are to be solved for v and 7 (remembering that A and 
k are also functions of v). It  can be verified that there exists one solution which 
satisfies the constraint (2.15) also. It  will be understood in the following that 
the parameters v, 7 appearing in the equation (2.7) for the minimum path are 
given by this solution. 

3. Evaluation o f  o 

The quantities 5Era(u) du and D occurring in (1.8) will now be evaluated 
explicitly. The former can be written, after an integration by parts and use of 
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equation (1.7), as 

7 7 

f gm(u)du = ~bt(XmfCm)l; + ~ ( V -  ½xV')[x=xr n du 
o o 

(3 1) 

With Vand x m given by (1.2) and (2.3) this becomes (see footnote 3) 

r s 0 f gm(u)dtl = ~'Ym'~m o-  l")kW2 0 x m 4 du 

= (½1M2vnc3v Shy dnv t-tXwZA4--12k'4v [k'2nc3v Shy dnv 

- 2(2k 2 - 1){ncv snv dnv - E(arnv, k) + k'2v} 

+ k2k,2 v])t u=r 
u = O  

(3.2) 

where v = vu + 7. 
Next, to determine D, we have to solve equation (i  .9a) which becomes, in 

the present case 

d2D 
- -  = w 2 [1 + 3XA2nc2(gu + 7; k)]D 
du 2 

= p2 [(k 2 __ k,2) + 6k,2nc2(pu + ,)i; k)]D (3.3) 

The last form is obtained from equations (2.4). In the harmonic oscillator 
limit (X -~ 0, k '  -~ 0, v -+ w and nc --> cosh) the solution of the above equation 
which satisfies the initial conditions (1.9b) is readily seen to be (hw) -1 sinh wu. 
The solution we seek for X 4= 0 has to be such as to tend to this function 
when the limit X --> 0 is taken. Examination of  simple combinations of  elliptic 
functions which tend to a sinh function in this limit leads one to the combination 

sn(vu + "r) a n ( ~  + ~,) 
D1 = cn2(u  u + 3') (3.4) 

which satisfies equation (1.9a). Though it does not satisfy the initial conditions 
(1.9b) it can be used to generate the solution which does. In fact, by writing 

a Integrals of elliptic functions and their combinations may be found from the Tables 
in Gradshteyn and Ryzhik (1965). A concise presentation of the main properties of 
elliptic functions may be found in Bowman (1953). 



EVALUATION OF THE DENSITY MATRIX 285  

the general solution as 

D=gDI 

where g is to be determined by substitution in (1.9a), one gets (on using the 
fact that D 1 already satisfies that equation) 

d2g dD__A dg = 
D l ~ u  2+2  du du 0 (3.5) 

and hence 

g = cl + du (3.6) 

Particulars of evaluation of this integral and imposition of the boundary 
conditions on D(u) are given in the Appendix. The final result is 

D(r) = -(Shy dnv cn2 v)u=o •(snv any nc2v)u=r 

[ k2cnv ]"'-~ 
+ (k 2 - k'2)E(am(v +K), k) + k'2(v +K) 

Shy dnv u=o 
x ~v[ k2cn% + 2k'2( k2 - k'Z) sn2v] u=o 

(3.7) 

where once again v =mt + 7. The expression for the matrix element p(x2, x 1 ; r) 
is obtained on substituting (3.2) and (3.7) in (I.8). Some simplification is 
possible for the diagonal matrix element (xa = x2 = x). In this case one has 
2t = -½ ~ and hence 

[ pv k 2 c n 4 ~  + 2k,2(k 2 _ k,2)sn2½vr ]1/2 

p(x ix; r) = 21rh" sn~m'" dn{m'(2k2cn~vr + k '2 v'c sn~v'c an{w) 

sA2v sn{vr nca½pr d n ~ ,  x exp - h 

-[1 Xw2A 2 (k'2 - 2(k2 - 

(2 - 3k2)g, Xw2A4r 1 

The elliptic functions appearing here may expressed in terms of x 

en{vr = (A/x), sn{vr = 1 x--- £] , dn½wr = + --fi---] 

(3.8) 

(3.9) 
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The 7"- dependence will then enter only through the value of k which is 
determined implicitly by the first of equations (3.9). The integral of the 
expression (3.8) over x finally gives tile partition function Z. 

4. Discussion 

We have remarked earlier that the approximation (1.8) to the functional 
integral (1.5) is analogous to the saddle point approximation in ordinary 
integration. The validity of the saddle point approximation is known to depend 
on the existence of a large parameter which ensures very fast decrease of the 
integrand as one moves away from the saddle point. In the present case one 
would look for such a parameter in the argument of the exponential function 
in (1.5): By defining the nondimensional variables 

y = XI/2x and u' = (u/r) (4.1) 

one can write the exponent as 
1 

- E(u)du  - 2Xh Jo w-~r2 +y2 +y4 du' (4.2) 
o 

The nondimensional parameter (btwZr/2Xh) =- OawZ/2McT) determines how 
fast the exponent in (1.5) changes wheny(u') is varied from the minimum 
path. Our approximation may be considered good when this parameter is 
large. This is the case, in particular, when the anharmonicity (characterised 
by X) is small. It may be verified in fact that in the limit X -+ 0, the approxi- 
mation (1.8) together with (3.1), (3.2) and (3.7) tends to the exact result p(o) 
of the harmonic oscillator case, namely 

P(°) (x 1, x 2; r) = n,h sinh w r /  exp - 2~ sinh wr  

• [(xl 2 +x22) cosh wr - 2xlx2] } (4.3) 
/ 

Another point of interest concerns the correspondence between P and the 
propagator G. One can obtain G from P by formal replacement of r by it, and 
the representation (1.5) is consistent with this fact. I_am (1967) has observed 
that in the stationary phase approximation to the path integral representation 
for G, there exists an infinite number of stationary-phase paths which con- 
tribute to G, and that the contributions from all but one of these have a 
manifestly nonanalytic h-dependence (involving the exponential of X -1). The 
contribution from the exceptional path alone is the counterpart of our 
approximation to O, and is obtainable from the latter by the replacement 
r -> it. This is because there is only a single 'minimum path' which is relevant 
in the case of o-all  other paths which satisfy (2.1) and (1.6) have infinite 
discontinuities. Thus the analyticity with respect to 3, does not appear in 
quite the same light in the approximate expressions for G and P. 

It may be pertinent to remark, in this context, on the conjecture that if 
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the change of  sign of the perturbation parameter  3, results in a drastic change 
in the behavior of  the system (as in the case of  the anharmonic oscillator) 
then physical quantities pertaining to the system, considered as functions of  
~, should be singular at X = 0. While the behavior of  the energy levels and of  
the propagator of  the anharmonic oscillator conforms to this conjecture, it 
would be well to take note of  an even simpler example where the conjecture 
is not borne out. The example has to do with the harmonic oscillator, con- 
sidered as a perturbed free particle, the perturbation parameter being w 2. The 
energy levels, being proportional to w, have a branch point at w 2 = 0. But 
the density matrix (4 .3 ) -o r  the propagator- is  analytic (see footnote  4) at 
w 2 = 0. It appears that  in aggregating the contributions from all the energy 
eigenstates to the propagator,  the singularity (which is present in the individual 
energy eigenvalues) gets softened. It may be a safe conjecture that in general, 
the propagator has a smoother  dependence than the energy levels have on 
any perturbation parameter.  

Evaluation of  

Appendix 

f cn4( TM + T) du (A.1) sn 2 (vu + 'r) dn 2 (vu + ,~) 

is facilitated by reexpressing the integrand as 

cn4v sn4(v + K) 
sn 2 v dn 2v = k'2 en 2 (v + K) = k' 2 [nc2 (v + K) + cn 2 (v + K) - 2 ] (A.2) 

using the properties of  elliptic functions (see, for example section 8.15, 
Gradshteyn and Ryzhik, 1965). The recurrence formula (section 5.13, 
Gradshteyn and Ryzhik, 1965) 

f c n m a d a  = [ ( m -  1)k2]-1 [(rn - 2)(2k 2 - 1) f cnm-2ada  

+ (m - 3)k'=fen m-4a  dot + cn m-aa sna dna] (a .3)  

together with the result that 

f en2 a da = k -2 [EOma, k) - k '2 a] (A.4) 

enables us to write (A.1) as 

(k'2/u)5(ne2a + en2a - 2) da 

-~1 [ ~ sna dnae~a ] = IX ~ + (k '2 - k2)E(ama, k) - k '2aj (A.5) 

4 The material difference between this example and the case of the anharmonic 
oscillator, on which the question of analytieity seems to hinge, is the nonuniqueness, 
in the latter case, of the classical trajectories which connect specified initial and final 
configurations. While the harmonic osciUator has only one such trajectory, the anharmonic 
oscillator has an infinite number (I.am, 1967). 
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where a = vu + "y + K. Substituting this for the integral in (3.6) and returning 
to the variable v = a - K,  we obtain 

D = --cn2v cl - v k  ~ k2 - - +  ( k ' 2 s n v  dnv - k 2 ) E ( a m ( v  + K ) , k )  

- k ' 2 ( v  +K)}] (A.6) 

The initial conditions (9b) on D require that  at u = 0, the factor in square 
brackets in (A.6) should vanish and that  its derivative multiplied by  (Shy dnv/ 
cn 2 v) should be equal to (1/h). The former condit ion gives c 1 in terms of  c2 
and the latter reduces to 

-i 
+ (k 2 - k '2) ( - k ' 2 /dn2v )  + k'2[ (A.7) 

.J u=O 
After a l i t t le manipulat ion one gets 

C 2 = [h[k2cn4 v + 2k,2(k 2 _ k,2)sn2v])u= 0 (A.8) 

Introducing in (A.6) the values of  c 2 and c 1 thus determined,  we obtain the 
expression (3.7) for D. 
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